Решение неравенств. Доступно о том, как решать неравенства. Неравенства. Виды неравенств Решение неравенств 17

Линейными называются неравенства левая и правая часть которых представляет собой линейные функции относительно неизвестной величины. К ним относятся, например, неравенства:

2х-1 -х+3; 7х 0;

5 >4 - 6x 9- x < x + 5 .

1) Строгие неравенства: ax +b>0 либо ax + b<0

2) Нестрогие неравенства: ax +b≤0 либо ax + b 0

Разберем такое задание . Одна из сторон параллелограмма составляет 7см. Какой должна быть длина другой стороны, чтобы периметр параллелограмма был больше 44 см?

Пусть искомая сторона составит х см. В таком случае периметр параллелограмма будет представлен (14 + 2х) см. Неравенство 14 + 2х > 44 является математической моделью задачи о периметре параллелограмма. Если в этом неравенстве заменить переменную х на, например, число 16, то получим верное числовое неравенство 14 + 32 > 44. В таком случае говорят, что число 16 является решением неравенства 14 + 2х > 44.

Решением неравенства называют значение переменной, которое обращает его в верное числовое неравенство.

Следовательно, каждое из чисел 15,1; 20;73 выступают решением неравенства 14 + 2х > 44, а число 10, например, не является его решением.

Решить неравенство означает установить все его решения или доказать, что решений не существует.

Формулировка решения неравенства сходна с формулировкой корня уравнения. И все же не принято обозначать «корень неравенства».

Свойства числовых равенств помогали нам решать уравнения. Точно так же свойства числовых неравенств помогут решать неравенства.

Решая уравнение, мы меняем его другим, более простым уравнением, но равнозначным заданному. По схожей схеме находят ответ и неравенства. При смене уравнения на равнозначное ему уравнение пользуются теоремой о перенесении слагаемых из одной части уравнения в противоположную и об умножении обеих частей уравнения на одно и то же отличное от нуля число. При решении неравенства есть существенное различие его с уравнением, которое заключается в том, что всякое решение уравнения можно проверить просто подстановкой в исходное уравнение. В неравенствах такой способ отсутствует, так как бесчисленное множество решений подставить в исходное неравенство не представляется возможным. Поэтому есть важное понятие, вот эти стрелочки <=> - это знак эквивалентных, или равносильных, преобразований. Преобразование называются равносильными, или эквивалентными , если они не изменяет множества решений.

Сходные правила решения неравенств.

Если какое-либо слагаемое переместить из одной части неравенства в другую, заменив при этом его знак на противоположный, то получим неравенство, эквивалентное данному.

Если обе части неравенства умножить (разделить) на одно и то же положительное число, то получим неравенство, эквивалентное данному.

Если обе части неравенства умножить (разделить) на одно и то же отрицательное число, заменив при этом знак неравенства на противоположный, то получим неравенство, эквивалентное данному.

Используя эти правила вычислим нижеследующие неравенства.

1) Разберем неравенство 2x - 5 > 9 .

Это линейное неравенство , найдем его решение и обсудим основные понятия.

2x - 5 > 9 <=> 2x > 14 (5 перенесли в левую часть с противоположным знаком), далее поделили все на 2 и имеем x > 7 . Нанесем множество решений на ось x

Нами получен положительно направленный луч. Отметим множество решений либо в виде неравенства x > 7 , либо в виде интервала х(7; ∞). А что выступает частным решением этого неравенства? Например, x = 10 - это частное решение этого неравенства, x = 12 - это тоже частное решение этого неравенства.

Частных решений много, но наша задача - найти все решения. А решений, как правило, бесчисленное множество.

Разберем пример 2:

2) Решить неравенство 4a - 11 > a + 13 .

Решим его: а переместим в одну сторону, 11 переместим в другую сторону, получим 3a < 24, и в результате после деления обеих частей на 3 неравенство имеет вид a<8 .

4a - 11 > a + 13 <=> 3a < 24 <=> a < 8 .

Тоже отобразим множество a < 8 , но уже на оси а .

Ответ либо пишем в виде неравенства a < 8, либо а (-∞;8), 8 не включается.

Вида ах 2 + bх + 0 0, где (вместо знака > может быть, разумеется, любой другой знак неравенства). Всеми необходимыми для решения таких неравенств фактами теории мы с вами располагаем, в чем сейчас и убедимся.

Пример 1 . Решить неравенство:

а) х 2 - 2х - 3 >0; б) х 2 - 2х - 3 < 0;
в) х 2 - 2х - 3 > 0; г) х 2 - 2х - 3 < 0.
Решение,

а) Рассмотрим параболу у = х 2 - 2х - 3, изображенную на рис. 117.

Решить неравенство х 2 - 2х - 3 > 0 - это значит ответить на вопрос, при каких значениях х ординаты точек параболы положительны.

Замечаем, что у > 0, т. е. график функции расположен выше оси х, при х < -1 или при х > 3.

Значит, решениями неравенства служат все точки открытого луча (- 00 , - 1), а также все точки открытого луча (3, +00).

Используя знак U (знак объединения множеств), ответ можно записать так: (-00 , - 1) U (3, +00). Впрочем, ответ можно записать и так: х < - 1; х > 3.

б) Неравенство х 2 - 2х - 3 < 0, или у < 0, где у = х 2 - 2х - 3, также можно решить с помощью рис. 117: график расположен ниже оси х, если -1 < х < 3. Поэтому решениями данного неравенства служат все точки интервала (- 1, 3).

в) Неравенство х 2 - 2х - 3 > 0 отличается от неравенства х 2 - 2х - 3 > 0 тем, что в ответ надо включить и корни уравнения х 2 - 2х - 3 = 0, т. е. точки х = -1

и х = 3. Таким образом, решениями данного нестрогого неравенства являются все точки луча (-00 , - 1], а также все точки луча .

Практичные математики обычно говорят так: зачем нам, решая неравенство ах 2 + bх + с > 0, аккуратно строить параболу график квадратичной функции

у = ах 2 + bх + с (как это было сделано в примере 1)? Достаточно сделать схематический набросок графика, для чего следует лишь найти корни квадратного трехчлена (точки пересечения параболы с осью х) и определить, куда направлены ветви параболы - вверх или вниз. Этот схематический набросок даст наглядное истолкование решению неравенства.

Пример 2. Решить неравенство - 2х 2 + Зх + 9 < 0.
Решение.

1) Найдем корни квадратного трехчлена - 2х 2 + Зх + 9: х 1 = 3; х 2 = - 1,5.

2) Парабола, служащая графиком функции у = -2х 2 + Зх + 9, пересекает ось х в точках 3 и - 1,5, а ветви параболы направлены вниз, поскольку старший коэффициент - отрицательное число - 2. На рис. 118 представлен набросок графика.

3) Используя рис. 118, делаем вывод: у < 0 на тех промежутках оси х, где график расположен ниже оси х, т.е. на открытом луче (-оо, -1,5) или на открытом луче C, +оо).
Ответ: х < -1,5; х > 3.

Пример 3. Решить неравенство 4х 2 - 4х + 1 < 0.
Решение.

1) Из уравнения 4х 2 - 4х + 1 = 0 находим .

2) Квадратный трехчлен имеет один корень ; это значит, что парабола, служащая графиком квадратного трехчлена, не пересекает ось х, а касается ее в точке . Ветви параболы направлены вверх (рис. 119.)

3) С помощью геометрической модели, представленной на рис. 119, устанавливаем, что заданное неравенство выполняется только в точке , поскольку при всех других значениях х ординаты графика положительны.
Ответ: .
Вы, наверное, заметили, что фактически в примерах 1, 2, 3 использовался вполне определенный алгоритм решения квадратных неравенств, оформим его.

Алгоритм решения квадратного неравенства ах 2 + bх + 0 0 (ах 2 + bх + с < 0)

На первом шаге этого алгоритма требуется найти корни квадратного трехчлена. Но ведь корни могут и не существовать, что же делать? Тогда алгоритм неприменим, значит, надо рассуждать как-то по-другому. Ключ к этим рассуждениям дают следующие теоремы.

Иными словами, если D < 0, а > 0, то неравенство ах 2 + bх + с > 0 выполняется при всех х; напротив, неравенство ах 2 + bх + с < 0 не имеет решений.
Доказательство. Графиком функции у = ах 2 + bх + с является парабола, ветви которой направлены вверх (поскольку а > 0) и которая не пересекает ось х, так как корней у квадратного трехчлена по условию нет. График представлен на рис. 120. Видим, что при всех х график расположен выше оси х, а это значит, что при всех х выполняется неравенство ах 2 + bх + с > 0, что и требовалось доказать.

Иными словами, если D < 0, а < 0, то неравенство ах 2 + bх + с < 0 выполняется при всех х; напротив, неравенство ах 2 + bх + с > 0 не имеет решений.

Доказательство. Графиком функции у = ах 2 + bх +с является парабола, ветви которой направлены вниз (поскольку а < 0) и которая не пересекает ось х, так как корней у квадратного трехчлена по условию нет. График представлен на рис. 121. Видим, что при всех х график расположен ниже оси х, а это значит, что при всех х выполняется неравенство ах 2 + bх + с < 0, что и требовалось доказать.

Пример 4 . Решить неравенство:

а) 2х 2 - х + 4 >0; б) -х 2 + Зх - 8 >0.

а) Найдем дискриминант квадратного трехчлена 2х 2 - х + 4. Имеем D = (-1) 2 - 4 2 4 = - 31 < 0.
Старший коэффициент трехчлена (число 2) положителен.

Значит, по теореме 1, при всех х выполняется неравенство 2x 2 - х + 4 > 0, т. е. решением заданного неравенства служит вся (-00 , + 00).

б) Найдем дискриминант квадратного трехчлена - х 2 + Зх - 8. Имеем D = З2 - 4 (- 1) (- 8) = - 23 < 0. Старший коэффициент трехчлена (число - 1) отрицателен. Следовательно, по теореме 2, при всех х выполняется неравенство - х 2 + Зx - 8 < 0. Это значит, что неравенство - х 2 + Зх - 8 0 не выполняется ни при каком значении х, т. е. заданное неравенство не имеет решений.

Ответ: а) (-00 , + 00); б) нет решений.

В следующем примере мы познакомимся еще с одним способом рассуждений, который применяется при решении квадратных неравенств.

Пример 5. Решить неравенство Зх 2 - 10х + 3 < 0.
Решение. Разложим квадратный трехчлен Зx 2 - 10x + 3 на множители. Корнями трехчлена являются числа 3 и , поэтому воспользовавшись ах 2 + bх + с = а (х - x 1)(x - х 2),получим Зx 2 - 10х + 3 = 3(х - 3) (х - )
Отметим на числовой прямой корни трехчлена: 3 и (рис. 122).

Пусть х > 3; тогда x-3>0 и x->0, а значит, и произведение 3(х - 3)(х - ) положительно. Далее, пусть < х < 3; тогда x-3< 0, а х- >0. Следовательно, произведение 3(х-3)(х-) отрицательно. Пусть, наконец, х <; тогда x-3< 0 и x- < 0. Но в таком случае произведение
3(x -3)(x -) положительно.

Подводя итог рассуждениям, приходим к выводу: знаки квадратного трехчлена Зx 2 - 10х + 3 изменяются так, как показано на рис. 122. Нас же интересует, при каких х квадратный трехчлен принимает отрицательные значения. Из рис. 122 делаем вывод: квадратный трехчлен Зx 2 - 10х + 3 принимает отрицательные значения для любого значения х из интервала (, 3)
Ответ (, 3), или < х < 3.

Замечание. Метод рассуждений, который мы применили в примере 5, обычно называют методом интервалов (или методом промежутков). Он активно используется в математике для решения рациональных неравенств. В 9-м классе мы изучим метод интервалов более детально.

Пример 6 . При каких значениях параметра р квадратное уравнение х 2 - 5х + р 2 = 0:
а) имеет два различных корня;

б) имеет один корень;

в) не имеет -корней?

Решение. Число корней квадратного уравнения зависит от знака его дискриминанта D. В данном случае находим D = 25 - 4р 2 .

а) Квадратное уравнение имеет два различных корня, если D>0, значит, задача сводится к решению неравенства 25 - 4р 2 > 0. Умножим обе части этого неравенства на -1 (не забыв изменить при этом знак неравенства). Получим равносильное неравенство 4р 2 - 25 < 0. Далее имеем 4 (р - 2,5) (р + 2,5) < 0.

Знаки выражения 4(р - 2,5) (р + 2,5) указаны на рис. 123.

Делаем вывод, что неравенство 4(р - 2,5)(р + 2,5) < 0 выполняется для всех значений р из интервала (-2,5; 2,5). Именно при этих значениях параметра р данное квадратное уравнение имеет два различных корня.

б) квадратное уравнение имеет один корень, если D - 0.
Как мы установили выше, D = 0 при р = 2,5 или р = -2,5.

Именно при этих значениях параметра р данное квадратное уравнение имеет только один корень.

в) Квадратное уравнение не имеет корней, если D < 0. Решим неравенство 25 - 4р 2 < 0.

Получаем 4р 2 - 25 > 0; 4 (р-2,5)(р + 2,5)>0, откуда (см. рис. 123) р < -2,5; р > 2,5. При этих значениях параметра р данное квадратное уравнение не имеет корней.

Ответ: а) при р (-2,5, 2,5);

б) при р = 2,5 илир = -2,5;
в) при р < - 2,5 или р > 2,5.

Мордкович А. Г., Алгебра . 8 кл.: Учеб. для общеобразоват. учреждений.- 3-е изд., доработ. - М.: Мнемозина, 2001. - 223 с: ил.

Помощь школьнику онлайн , Математика для 8 класса скачать , календарно-тематическое планирование

Неравенство – это числовое соотношение, иллюстрирующее величину чисел относительно друг друга. Неравенства широко используются при поиске величин в прикладных науках. Наш калькулятор поможет вам разобраться с такой непростой темой, как решение линейных неравенств.

Что такое неравенство

Неравные соотношения в реальной жизни соотносятся с постоянным сравнением различных объектов: выше или ниже, дальше или ближе, тяжелее или легче. Интуитивно или зрительно мы можем понять, что один объект больше, выше или тяжелее другого, однако фактически речь всегда идет о сравнении чисел, которые характеризуют соответствующие величины. Сравнивать объекты можно по любому признаку и в любом случае мы можем составить числовое неравенство.

Если неизвестные величины при конкретных условиях равны, то для их численного определения мы составляем уравнение. Если же нет, то вместо знака «равно» мы можем указать любое другое соотношение между этими величинами. Два числа или математических объекта могут быть больше «>», меньше «<» или равны «=» относительно друг друга. В этом случае речь идет о строгих неравенствах. Если же в неравных соотношениях присутствует знак равно и числовые элементы больше или равны (a ≥ b) или меньше или равны (a ≤ b), то такие неравенства называются нестрогими.

Знаки неравенств в их современном виде придумал британский математик Томас Гарриот, который в 1631 году выпустил книгу о неравных соотношениях. Знаки больше «>» и меньше «<» представляли собой положенные на бок буквы V, поэтому пришлись по вкусу не только математикам, но и типографам.

Решение неравенств

Неравенства, как и уравнения, бывают разных типов. Линейные, квадратные, логарифмические или показательные неравные соотношения развязываются различными методами. Однако вне зависимости от метода, любое неравенство вначале требуется привести к стандартному виду. Для этого используются тождественные преобразования, идентичные видоизменениям равенств.

Тождественные преобразования неравенств

Такие трансформации выражений очень похожи на привидение уравнений, однако они имеют нюансы, которые важно учитывать при развязывании неравенств.

Первое тождественное преобразование идентично аналогичной операции с равенствами. К обеим сторонам неравного соотношения можно прибавить или отнять одно и то же число или выражение с неизвестным иксом, при этом знак неравенства останется прежним. Чаще всего этот метод применяется в упрощенной форме как перенос членов выражения через знак неравенства со сменой знака числа на противоположный. Имеется в виду смена знака самого члена, то есть +R при переносе через любой знак неравенства изменится на – R и наоборот.

Второе преобразование имеет два пункта:

  1. Обе стороны неравного соотношения разрешается умножить или разделить на одно и то же положительное число. Знак самого неравенства при этом не изменится.
  2. Обе стороны неравенства разрешается разделить или умножить на одно и то же отрицательное число. Знак самого неравенства изменится на противоположный.

Второе тождественное преобразование неравенств имеет серьезные различия с видоизменением уравнений. Во-первых, при умножении/делении на отрицательное число знак неравного выражения всегда изменяется на обратный. Во-вторых, разделить или умножить части отношения разрешается только на число, а не на любое выражение, содержащее неизвестное. Дело в том, что мы не можем точно знать, число больше или меньше нуля скрывается за неизвестным, поэтому второе тождественное преобразование применяется к неравенствам исключительно с числами. Рассмотрим эти правила на примерах.

Примеры развязывания неравенств

В заданиях по алгебре встречаются самые разные задания на тему неравенств. Пусть нам дано выражение:

6x − 3(4x + 1) > 6.

Для начала раскроем скобки и перенесем все неизвестные влево, а все числа – вправо.

6x − 12x > 6 + 3

Нам требуется поделить обе части выражения на −6, поэтому при нахождении неизвестного икса знак неравенства изменится на противоположный.

При решении этого неравенства мы использовали оба тождественных преобразования: перенесли все числа справа от знака и разделили обе стороны соотношения на отрицательное число.

Наша программа представляет собой калькулятор решения числовых неравенств, которые не содержат неизвестных. В программу заложены следующие теоремы для соотношений трех чисел:

  • если A < B то A–C< B–C;
  • если A > B, то A–C > B–C.

Вместо вычитания членов A–C вы можете указать любое арифметическое действие: сложение, умножение или деление. Таким образом, калькулятор автоматически представит неравенства сумм, разностей, произведений или дробей.

Заключение

В реальной жизни неравенства встречаются также часто, как и уравнения. Естественно, что в быту знания о разрешении неравенств могут и не понадобиться. Однако в прикладных науках неравенства и их системы находят широкое применение. К примеру, различные исследования проблем глобальной экономики сводятся к составлению и развязыванию систем линейных или квадратных неравенств, а некоторые неравные отношения служат однозначным способом доказательства существования определенных объектов. Пользуйтесь нашими программами для решения линейных неравенств или проверки собственных выкладок.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Одна из тем, которая требует от учеников максимума внимания и усидчивости, это решение неравенств. Такие похожие на уравнения и при этом сильно от них отличающиеся. Потому что к их решению нужен особый подход.

Свойства, которые потребуются для нахождения ответа

Все они применяются для того, чтобы заменить имеющуюся запись равносильной. Большая их часть похожа на то, что было в уравнениях. Но есть и отличия.

  • Функцию, которая определена в ОДЗ, или любое число можно прибавить к обеим частям исходного неравенства.
  • Аналогичным образом возможно умножение, но только на положительную функцию или число.
  • Если это действие выполняется с отрицательными функцией или числом, то знак неравенства нужно заменить на противоположный.
  • Функции, которые являются неотрицательными, можно возводить в положительную степень.

Иногда решение неравенств сопровождается действиями, которые дают посторонние ответы. Их нужно исключить, сравнив область ОДЗ и множество решений.

Использование метода интервалов

Его суть состоит в том, чтобы свести неравенство к уравнению, в котором в правой части стоит ноль.

  1. Определить область, где лежат допустимые значения переменных, то есть ОДЗ.
  2. Преобразовать неравенство с помощью математических операций так, чтобы в его правой части стоял ноль.
  3. Знак неравенства заменить на «=» и решить соответствующее уравнение.
  4. На числовой оси отметить все ответы, которые получились во время решения, а также интервалы ОДЗ. При строгом неравенстве точки нужно нарисовать выколотыми. Если присутствует знак равенства, то их полагается закрасить.
  5. Определить знак исходной функции на каждом интервале, получившемся из точек ОДЗ и делящих его ответов. Если при переходе через точку знак функции не изменяется, то она входит в ответ. В противном случае — исключается.
  6. Граничные для ОДЗ точки нужно дополнительно проверить и только потом включать или нет в ответ.
  7. Ответ, который получается, нужно записать в виде объединенных множеств.

Немного о двойных неравенствах

Они используют в записи сразу два знака неравенства. То есть некоторая функция ограничена условиями сразу дважды. Такие неравенства решаются, как система из двух, когда исходное разбито на части. И в методе интервалов указываются ответы от решения обоих уравнений.

Для их решения также допустимо использовать свойства, указанные выше. С их помощью удобно приводить неравенство к равенству нулю.

Как обстоят дела с неравенствами, в которых имеется модуль?

В этом случае решение неравенств использует следующие свойства, причем они справедливы для положительного значения «а».

Если «х» принимает алгебраическое выражение, то справедливы такие замены:

  • |х| < a на -a < х < a;
  • |х| > a на х < -a или х > a.

Если неравенства нестрогие, то формулы тоже верны, только в них, кроме знака больше или меньше, появляется «=».

Как осуществляется решение системы неравенств?

Это знание потребуется в тех случаях, когда дано такое задание или имеется запись двойного неравенства или в записи появился модуль. В такой ситуации решением будут такие значения переменных, которые удовлетворяли бы всем имеющимся в записи неравенствам. Если таких чисел нет, то система решений не имеет.

План, по которому выполняется решение системы неравенств:

  • решить каждое из них отдельно;
  • изобразить на числовой оси все интервалы и определить их пересечения;
  • записать ответ системы, который и будет объединением того, что получилось во втором пункте.

Как быть с дробными неравенствами?

Поскольку во время их решения может потребоваться изменение знака неравенства, то нужно очень тщательно и внимательно выполнять все пункты плана. Иначе может получиться противоположный ответ.

Решение дробных неравенств тоже использует метод интервалов. И план действий будет таким:

  • Используя описанные свойства, придать дроби такой вид, чтобы справа от знака остался только ноль.
  • Заменить неравенство на «=» и определить точки, в которых функция будет равна нулю.
  • Отметить их на координатной оси. При этом числа, получившиеся в результате расчетов в знаменателе, всегда будут выколоты. Все другие — исходя из условия неравенства.
  • Определить интервалы знакопостоянства.
  • В ответ записать объединение тех промежутков, знак которых соответствует тому, который был в исходном неравенстве.

Ситуации, когда в неравенстве появляется иррациональность

Другими словами, в записи присутствует математический корень. Поскольку в школьном курсе алгебры большая часть заданий идет для квадратного корня, то именно он и будет рассмотрен.

Решение иррациональных неравенств сводится к тому, чтобы получить систему из двух или трех, которые будут равносильны исходному.

Исходное неравенство условие равносильная система
√ n(х) < m(х) m(х) меньше или равно 0 решений нет
m(х) больше 0

n(х) больше или равно 0

n(х) < (m(х)) 2

√ n(х) > m(х)

m(х) больше или равно 0

n(х) > (m(х)) 2

n(х) больше или равно 0

m(х) меньше 0

√n(х) ≤ m(х) m(х) меньше 0 решений нет
m(х) больше или равно 0

n(х) больше или равно 0

n(х) ≤ (m(х)) 2

√n(х) ≥ m(х)

m(х) больше или равно 0

n(х) ≥ (m(х)) 2

n(х) больше или равно 0

m(х) меньше 0

√ n(х) < √ m(х)

n(х) больше или равно 0

n(х) меньше m(х)

√n(х) * m(х) < 0

n(х) больше 0

m(х) меньше 0

√n(х) * m(х) > 0

n(х) больше 0

m(х) больше 0

√n(х) * m(х) ≤ 0

n(х) больше 0

n(х) равно 0

m(х) -любое

√n(х) * m(х) ≥ 0

n(х) больше 0

n(х) равно 0

m(х) -любое

Примеры решения разных видов неравенств

Для того чтобы добавить наглядности в теорию про решение неравенств, ниже приведены примеры.

Первый пример. 2х - 4 > 1 + х

Решение: для того чтобы определить ОДЗ, достаточно просто внимательно посмотреть на неравенство. Оно образовано из линейных функций, поэтому определено при всех значениях переменной.

Теперь из обеих частей неравенства нужно вычесть (1 + х). Получается: 2х - 4 - (1 + х) > 0. После того как будут раскрыты скобки и приведены подобные слагаемые неравенство примет такой вид: х - 5 > 0.

Приравняв его к нулю, легко найти его решение: х = 5.

Теперь эту точку с цифрой 5, нужно отметить на координатном луче. Потом проверить знаки исходной функции. На первом интервале от минус бесконечности до 5 можно взять число 0 и подставить его в неравенство, получившееся после преобразований. После расчетов получается -7 >0. под дугой интервала нужно подписать знак минуса.

На следующем интервале от 5 до бесконечности можно выбрать число 6. Тогда получается, что 1 > 0. Под дугой подписан знак «+». Этот второй интервал и будет ответом неравенства.

Ответ: х лежит в интервале (5; ∞).

Второй пример. Требуется решить систему двух уравнений: 3х + 3 ≤ 2х + 1 и 3х - 2 ≤ 4х + 2.

Решение. ОДЗ этих неравенств тоже лежит в области любых чисел, поскольку даны линейные функции.

Второе неравенство примет вид такого уравнения: 3х - 2 - 4х - 2 = 0. После преобразования: -х - 4 =0. Из него получается значение для переменной, равное -4.

Эти два числа нужно отметить на оси, изобразив интервалы. Поскольку неравенство нестрогое, то все точки нужно закрасить. Первый интервал от минус бесконечности до -4. Пусть будет выбрано число -5. Первое неравенство даст значение -3, а второе 1. Значит, этот промежуток не входит в ответ.

Второй интервал от -4 до -2. Можно выбрать число -3 и подставить его в оба неравенства. В первом и во втором получается значение -1. Значит, под дугой «-».

На последнем интервале от -2 до бесконечности самым лучшим числом является ноль. Его и нужно подставить и найти значения неравенств. В первом из них получается положительное число, а втором ноль. Этот промежуток тоже нужно исключить из ответа.

Из трех интервалов решением неравенства является только один.

Ответ: х принадлежит [-4; -2].

Третий пример. |1 - х| > 2 |х - 1|.

Решение. Первым делом нужно определить точки, в которых функции обращаются в ноль. Для левого этим числом будет 2, для правого — 1. их нужно отметить на луче и определить промежутки знакопостоянства.

На первом интервале, от минус бесконечности до 1, функция из левой части неравенства принимает положительные значения, а из правой — отрицательные. Под дугой нужно записать рядом два знака «+» и «-».

Следующий промежуток от 1 до 2. На нем обе функции принимают положительные значения. Значит, под дугой два плюса.

Третий интервал от 2 до бесконечности даст такой результат: левая функция — отрицательная, правая — положительная.

С учетом получившихся знаков нужно вычислить значения неравенства для всех промежутков.

На первом получается такое неравенство: 2 - х > - 2 (х - 1). Минус перед двойкой во втором неравенстве получился из-за того, что эта функция отрицательная.

После преобразования неравенство выглядит так: х > 0. Оно сразу дает значения переменной. То есть из этого интервала в ответ пойдет только промежуток от 0 до 1.

На втором: 2 - х > 2 (х - 1). Преобразования дадут такое неравенство: -3х + 4 больше ноля. Его нулем будет значение х = 4/3. С учетом знака неравенства получается, что х должен быть меньше этого числа. Значит, этот интервал уменьшается до промежутка от 1 до 4/3.

Последний дает такую запись неравенства: - (2 - х) > 2 (х - 1). Его преобразование приводит к такому: -х > 0. То есть уравнение верно при х меньшем ноля. Это значит, что на искомом промежутке неравенство не дает решений.

На первых двух промежутках граничным оказалось число 1. Его нужно проверить отдельно. То есть подставить в исходное неравенство. Получается: |2 - 1| > 2 |1 - 1|. Подсчет дает что 1 больше 0. Это верное утверждение, поэтому единица входит в ответ.

Ответ: х лежит в промежутке (0; 4/3).