Роль ферментов в организме человека. Ферменты в организме — виды, их роль и действие Образная модель механизма действия ферментов

Часто наряду с витаминами, минералами и другими полезными для организма человека элементами упоминают вещества под названием ферменты. Что такое ферменты и какую функцию в организме они выполняют, какова их природа и где они находятся?

Это вещества белковой природы, биокатализаторы. Без них не существовало бы детского питания, готовых каш, кваса, брынзы, сыра, йогурта, кефира. Они влияют на работу всех систем человеческого организма. Недостаточная или избыточная активность этих веществ негативно сказывается на здоровье, поэтому нужно знать, что такое ферменты, чтобы избежать проблем, вызванных их нехваткой.

Что это такое?

Ферменты - это синтезирующиеся живыми клетками белковые молекулы. Их более сотни насчитывается в каждой клетке. Роль этих веществ колоссальна. Они влияют на течение скорости химических реакций при температуре, которая подходит для данного организма. Другое название ферментов - биологические катализаторы. Увеличение скорости химической реакции происходит за счет облегчения ее протекания. Как катализаторы, они не расходуются в процессе реакции и не изменяют ее направления. Главные функции ферментов заключаются в том, что без них очень медленно в живых организмах протекали бы все реакции, а это бы заметно сказывалось на жизнеспособности.

Например, при пережевывании продуктов, которые содержат крахмал (картофель, рис), во рту появляется сладковатый привкус, что связано с работой амилазы - фермента для расщепления крахмала, присутствующего в слюне. Сам по себе крахмал безвкусный, так как является полисахаридом. Сладкий вкус имеют продукты его расщепления (моносахариды): глюкоза, мальтоза, декстрины.

Все делятся на простые и сложные. Первые состоят только из белка, а вторые - из белковой (апофермент) и небелковой (кофермент) части. Коферментами могут быть витамины групп В, Е, К.

Классы ферментов

Традиционно эти вещества разделены на шесть групп. Название им первоначально давали в зависимости от субстрата, на который действует определенный фермент, путем добавления к его корню окончания -аза. Так, те ферменты, что гидролизируют белки (протеины) стали называть протеиназами, жиры (липос) - липазами, крахмал (амилон) - амилазами. Потом ферменты, катализирующие сходные реакции, получили названия, которые указывают на тип соответствующей реакции - ацилазы, декарбоксилазы, оксидазы, дегидрогеназы и другие. Большинство этих названий и сегодня используется.

Позже Международный биохимический союз ввел номенклатуру, согласно которой название и классификация ферментов должны соответствовать типу и механизму катализируемой химической реакции. Данный шаг принес облегчение в систематизации данных, что относятся к различным аспектам метаболизма. Реакции и катализирующие их ферменты делятся на шесть классов. Каждый класс состоит из нескольких подклассов (4-13). Первая часть названия фермента отвечает названию субстрата, вторая - типу катализируемой реакции с окончанием -аза. У каждого фермента по классификации (КФ) есть свой кодовый номер. Первой цифре отвечает класс реакции, следующей - подкласс и третьей - подподкласс. Четвертой цифрой обозначен номер фермента по порядку в его подподклассе. Например, если КФ 2.7.1.1, то фермент принадлежит ко 2-му классу, 7-му подклассу, 1-му подподклассу. Последней цифрой обозначается фермент гексокиназа.

Значение

Если говорить о том, что такое ферменты, нельзя обойти стороной вопрос об их значении в современном мире. Они нашли широкое применение почти во всех отраслях деятельности человека. Такая их распространенность связана с тем, что они способны вне живых клеток сохранять свои уникальные свойства. В медицине, например, применяются ферменты групп липаз, протеаз, амилаз. Они расщепляют жиры, белки, крахмал. Как правило, этот тип входит в состав таких лекарственных препаратов, как «Панзинорм», «Фестал». Эти средства в первую очередь используются с целью лечения заболеваний ЖКТ. Некоторые ферменты способны растворять в кровеносных сосудах тромбы, они помогают при лечении гнойных ран. В лечении онкологических заболеваний энзимотерапия занимает особое место.

Благодаря способности расщеплять крахмал в пищевой промышленности широко используется фермент амилаза. В этой же области применяют липазы, которые расщепляют жиры и протеазы, расщепляющие белки. В пивоварении, виноделии и хлебопечении используют ферменты амилазы. В приготовлении готовых каш и для смягчения мяса применяют протеазы. В производстве сыра используют липазы и сычужный фермент. В косметической промышленности также не обойтись без них. Они входят в состав стиральных порошков, кремов. В стиральные порошки, например, добавляют расщепляющую крахмал амилазу. Белковые загрязнения и белки расщепляются протеазами, а липазы очищают ткань от масла и жира.

Роль ферментов в организме

Два процесса отвечают в организме человека за обмен веществ: анаболизм и катаболизм. Первый обеспечивает усвоение энергии и необходимых веществ, второй - распад продуктов жизнедеятельности. Постоянное взаимодействие этих процессов влияет на усвоение углеводов, белков и жиров и поддержание жизнедеятельности организма. Обменные процессы регулируются тремя системами: нервной, эндокринной и кровеносной. Они могут нормально функционировать с помощью цепи ферментов, которые в свою очередь обеспечивают адаптацию человека к изменениям условий внешней и внутренней среды. В состав ферментов входит как белковая, так и небелковая продукция.

В процессе биохимических реакций в организме, в протекании которых принимают участие ферменты, сами они не расходуются. У каждого из них своя химическая структура и своя уникальная роль, поэтому каждый инициирует только определенную реакцию. Биохимические катализаторы помогают прямой кишке, легким, почкам, печени выводить токсины и продукты жизнедеятельности из организма. Также они способствуют построению кожи, костей, нервных клеток, мышечных тканей. Специфические ферменты используются для окисления глюкозы.

Все ферменты в организме делятся на метаболические и пищеварительные. Метаболические участвуют в нейтрализации токсинов, производстве белков и энергии, ускоряют в клетках биохимические процессы. Так, например, супероксидисмутаза является сильнейшим антиоксидантом, который содержится в естественном виде в большинстве зеленых растений, белокочанной, брюссельской капусте и брокколи, в проростках пшеницы, зелени, ячмене.

Активность ферментов

Для того чтобы данные вещества полностью выполняли свои функции, необходимы определенные условия. На их активность влияет в первую очередь температура. При повышенной возрастает скорость химических реакций. В результате увеличения скорости молекул у них появляется больше шансов на столкновение друг с другом, и возможность протекания реакции, следовательно, увеличивается. Оптимальная температура обеспечивает наибольшую активность. Вследствие денатурации белков, которая происходит при отклонении оптимальной температуры от нормы, снижается скорость химической реакции. При достижении температуры точки замерзания фермент не денатурирует, но инактивируется. Способ быстрого замораживания, который широко используют для длительного хранения продуктов, останавливает рост и развитие микроорганизмов с последующей инактивацией ферментов, которые находятся внутри. Как результат, продукты питания не разлагаются.

На активность ферментов также влияет кислотность окружающей среды. Работают они при нейтральном рН. Только некоторые из ферментов работают в щелочной, сильнощелочной, кислой или сильнокислой среде. Например, сычужный фермент расщепляет белки в сильнокислой среде в желудке человека. На фермент могут действовать ингибиторы и активаторы. Активируют их некоторые ионы, например, металлов. Другие ионы оказывают подавляющее действие на активность ферментов.

Гиперактивность

Избыточная активность ферментов несет свои последствия для функционирования всего организма. Во-первых, она провоцирует повышение скорости действия фермента, что в свою очередь вызывает дефицит субстрата реакции и образование избытка продукта химической реакции. Дефицит субстратов и накопление названных продуктов заметно ухудшает самочувствие, нарушает жизнедеятельность организма, вызывает развитие заболеваний и может закончиться смертью человека. Накопление мочевой кислоты, например, приводит к возникновению подагры и почечной недостаточности. Из-за отсутствия субстрата не возникнет избытка продукта. Это работает только в тех случаях, когда без одного и другого можно обойтись.

Причин избытка активности ферментов несколько. Первая - это мутация гена, она может быть врожденной или приобретенной под влиянием мутагенов. Второй фактор - избыток в воде или пище витамина или микроэлемента, который необходим для работы фермента. Избыток витамина С, к примеру, через повышенную активность ферментов синтеза коллагена нарушает механизмы заживления ран.

Гипоактивность

Как повышенная, так и пониженная активность ферментов негативно сказывается на деятельности организма. Во втором случае возможно полное прекращение активности. Это состояние резко снижает скорость химической реакции фермента. Как результат, накапливание субстрата дополняется дефицитом продукта, что приводит к серьезным осложнениям. На фоне нарушений жизнедеятельности организма ухудшается самочувствие, развиваются заболевания, и может быть летальный исход. Накопление аммиака или дефицит АТФ приводит к смерти. Из-за накопления фенилаланина развивается олигофрения. Здесь также действует принцип, что при отсутствии субстрата фермента не возникнет накопления субстрата реакции. Плохое влияние на организм оказывает состояние, при котором не выполняют своих функций ферменты крови.

Рассматривают несколько причин гипоактивности. Мутация генов врожденная или приобретенная - это первое. Состояние можно откорректировать с помощью генотерапии. Можно попробовать исключить из пищи субстраты отсутствующего фермента. В некоторых случаях это может помочь. Второй фактор - отсутствие в пище витамина или микроэлемента, необходимых для работы фермента. Следующие причины - нарушенная активация витамина, дефицит аминокислот, ацидоз, появление ингибиторов в клетке, денатурация белков. Активность ферментов снижается также со снижением температуры тела. Некоторые факторы влияют на функции ферментов всех типов, а другие - только на работу определенных.

Пищеварительные ферменты

От процесса приема пищи человек получает удовольствие и иногда игнорирует то, что главная задача пищеварения - это превращение продуктов питания в вещества, способные стать источником энергии и строительным материалом для тела, всасываясь в кишечник. Ферменты белков способствуют этому процессу. Пищеварительные вещества вырабатываются органами пищеварения, принимающими участие в процессе расщепления пищи. Действие ферментов нужно для того, чтобы получать необходимые углеводы, жиры, аминокислоты из пищи, что составляет необходимые питательные вещества и энергию для нормальной жизнедеятельности организма.

С целью нормализации нарушенного пищеварения рекомендуется с приемом пищи одновременно применять и необходимые белковые вещества. При переедании можно принять 1-2 таблетки после или во время еды. В аптеках продается большое количество различных ферментных препаратов, которые способствуют улучшению процессов пищеварения. Запастись ими следует при приеме одного вида питательных веществ. При проблемах с пережевыванием или глотанием пищи необходимо во время еды принимать ферменты. Весомыми причинами для их использования могут быть также такие заболевания, как приобретенные и врожденные ферментопатии, синдром раздраженной толстой кишки, гепатит, холангит, холецистит, панкреатит, колит, хронический гастрит. Ферментные препараты следует принимать вместе с лекарствами, влияющими на процесс пищеварения.

Энзимопатология

В медицине есть целый раздел, который занимается поиском связи между заболеванием и отсутствием синтеза определенного фермента. Это область энзимологии - энзимопатология. Недостаточный синтез ферментов также подлежит рассмотрению. Например, наследственное заболевание фенилкетонурия развивается на фоне потери способности клеток печени осуществлять синтез этого вещества, что катализирует превращение в тирозин фенилаланина. Симптомами данного заболевания являются расстройства психической деятельности. Из-за постепенного накопления токсических веществ в организме больного тревожат такие признаки, как рвота, беспокойство, повышенная раздражительность, отсутствие интереса к чему-либо, выраженная усталость.

При рождении ребенка патология не проявляется. Первичную симптоматику можно заметить в возрасте от двух до шести месяцев. Второе полугодие жизни малыша характеризируется выраженным отставанием в психическом развитии. У 60% больных развивается идиотия, менее чем 10% ограничиваются слабой степенью олигофрении. Ферменты клетки не справляются со своими функциями, но это можно поправить. Своевременная диагностика патологических изменений способна приостановить развитие заболевание до периода полового созревания. Лечение заключается в ограничении поступления с пищей фенилаланина.

Ферментные препараты

Отвечая на вопрос о том, что такое ферменты, можно отметить два определения. Первое - это биохимические катализаторы, а второе - это препараты, которые их содержат. Они способны нормализировать состояние среды в желудке и кишечнике, обеспечить расщепление до микрочастиц конечных продуктов, улучшить процесс всасывания. Они также препятствуют возникновению и развитию гастроэнтерологических заболеваний. Наиболее известным из ферментов является лекарственный препарат «Мезим Форте». В своем составе он имеет липазу, амилазу, протеазу, которые способствуют уменьшению болей при хроническом панкреатите. Капсулы принимают в качестве заместительного лечения при недостаточной выработке поджелудочной железой необходимых ферментов.

Данные препараты употребляются преимущественно во время еды. Количество капсул или таблеток назначает доктор, исходя из выявленных нарушений механизма всасывания. Хранить их лучше в холодильнике. При длительном приеме пищеварительных ферментов привыкания не возникает, и на работе поджелудочной железы это не сказывается. При выборе препарата стоит обратить внимание на дату, соотношение качества и цены. Препараты ферментов рекомендуют принимать при хронических заболеваниях органов пищеварения, при переедании, при периодических проблемах с желудком, а также при отравлении продуктами питания. Чаще всего доктора назначают таблетированный препарат «Мезим», который хорошо зарекомендовал себя на отечественном рынке и уверенно держит позиции. Есть и другие аналоги этого препарата, не менее известные и более чем доступные по цене. В частности, многие предпочитают таблетки "Пакреатин" или "Фестал", обладающие теми же свойствами, что и более дорогие аналоги.

Белковой природы, которые выполняют в организме роль

Механизм действия ферментов

Выяснение механизмов, лежащих в основе каталитического является одной из фундаментальных задач и актуальных проблем не только энзимологии, но и современной молекулярной биохимии и биологии.

Задолго до того как стали доступны чистые ферменты и была выяснена их природа, сложилось убеждение, что решающее значение для осуществления ферментативного процесса имеет соединение фермента с субстратом. Попытки обнаружить комплексное соединение фермента с субстратом долгое время не приводили к успеху, поскольку такой комплекс лабилен, он очень быстро распадается. Использование метода спектроскопии дало возможность выявить фермент-субстратные комплексы для каталазы, пероксидазы, алкогольдегидрогеназы, флавинзависимых ферментов.

Метод рентгеноструктурного анализа позволил получить много важных сведений о структуре и каталитических механизмах действия ферментов. Этот метод был использован для установления связи аналогов субстрата с ферментами лизоцимом и химотрипсином.

Некоторые прямые доказательства существования энзим-субстратных комплексов удалось получить для случаев, когда на одной из стадий каталитического цикла фермент оказывается связанным с субстратом ковалентной связью. В качестве примера может служить n-нитрофенилацетата, катализируемая химотрипсином. При смешивании фермента с этим эфиром химотрипсин ацетилируется по гидроксильной группе реакционно-способного остатка серина. Эта стадия протекает быстро, однако гидролиз ацетилхимотрипсина с образованием ацетата и свободною химотрипсина идет значительно медленнее. Поэтому в присутствии n-нитрофенилацетата накапливается ацетилхимотрипсин, который легко обнаружить.

Наличие субстрата в составе фермента можно «уловить» путем перевода неустойчивого комплекса ЕС в неактивную форму, например, обработкой фермент-субстратного комплекса боргидридом натрия, обладающего сильным восстановительным действием. Подобный комплекс в виде устойчивого ковалентного производного был обнаружен в ферменте альдолазе. Оказалось, что с молекулой субстрата взаимодействует е-аминогруппа лизина.

Субстрат взаимодействует с ферментом в определенной части, которая называется активным центром, или активной зоной фермента.

Под активным центром, или активной зоной, понимают ту часть молекулы ферментного белка, которая соединяется с субстратом (и кофакторами) и обусловливает ферментативные свойства молекулы. Активный центр определяет специфичность и каталитическую активность фермента и должен представлять собой структуру определенной степени сложности, приспособленную для тесного сближения и взаимодействия с молекулой субстрата или ее частями, непосредственно участвующими в реакции.

Среди функциональных групп различают входящие в состав «каталитически активного» участка фермента и образующие участок, обеспечивающий специфическое сродство (связывание субстрата с ферментом) — так называемый контактный, или «якорный» (или адсорбционный участок активного центра фермента).

Механизм действия энзимов объясняет теория Михаэлиса-Ментен. Согласно этой теории, процесс происходит в четыре этапа.

Механизм действия ферментов: I этап

Между субстратом (С) и энзимом (Е) возникает связь - образуется фермент-субстратный комплекс ЕС, в котором компоненты связаны между собой ковалентными, ионными, водными и другими связями.

Механизм действия ферментов: IІ этап

Субстрат под воздействием присоединенного фермента активируется и становится доступным для соответствующих реакций катализа ЕС.

Механизм действия ферментов: IІI этап

Совершается катализ ЕС. Эта теория подтверждена экспериментальными исследованиями.

И наконец, IV стадия характеризуется освобождением молекулы фермента Е и продуктов реакции Р. Последовательность преобразований можно отобразить так: Е+С - ЕС - ЕС* - Е+Р.

Специфичность действия ферментов

Каждый энзим действует на определенный субстрат или группу веществ, которые подобны по своей структуре. Специфичность действия ферментов объясняется сходством конфигурации активного центра и субстрата. В процессе взаимодействия образуется фермент-субстратный комплекс.

Ферменты, или энзимы (от лат. fermentum — закваска) — обычно белковые молекулы или молекулы РНК (рибозимы) или их комплексы, ускоряющие (катализирующие) химические реакции в живых организмах, не подвергаясь при этом никаким изменениям. Вещества, оказывающие подобное действие, существуют и в неживой природе и называются атализаторами.

Ферментативная активность может регулироваться активаторами и ингибиторами (активаторы — повышают, ингибиторы — понижают химические реакции).

Термины «фермент» и «энзим» давно используют как синонимы. Наука о ферментах называется энзимологией.

Жизнедеятельность любого организма не возможна без участия ферментов. Ферментативный катализ ускоряет прохождение всех биохимических реакций в организме и обеспечивает, таким образом, феномен жизни. Без присутствия ферментов в ходе биохимических реакций не произойдёт расщепления пищи на пять основных соединений: углеводы, жиры, белки, витамины и микроэлементы - пища останется бесполезной для организма. Таким образом, без ферментов жизнь замедляется.

Функции ферментов и их роль в жизнедеятельности организма
  1. стимулируют процесс переваривания и всасывания пищи;
  2. активизируют метаболизм, способствуют выведению умерших клеток из организма;
  3. регулируют осмотическое давление, нормализуют значение рН различных сред;
  4. обеспечивают обмен веществ, поддерживают способность организма противостоять воспалительным процессам;
  5. повышают иммунитет и способность организма к самовосстановлению и саморегуляции;
  6. способствуют детоксикации организма, очищают лимфу и кровь.

Необходимость в ферментах для здорового функционирования организма
Большинство учёных в настоящее время убеждены, что почти все болезни вызваны отсутствием или недостаточным количеством ферментов в организме. Медицинские исследования показывают, что нарушения процесса выработки ферментов в организме обусловлены генетическими факторами.

В частности, такое распространённое сейчас заболевание, как сахарный диабет, связано с тем, что поджелудочная железа недостаточно или вообще не вырабатывает фермент инсулин. Лейкемия и другие виды рака обусловлены отсутствием или слабостью ферментативных барьеров в организме. Эти факты постепенно подтверждаются научными исследованиями. Можно сказать, что если в организме присутствует необходимое количество ферментов - не будет ста болезней.

С возрастом, по мере старения человеческого организма, выработка ферментов снижается. Организм начинает испытывать их недостаток, что отражается на протекании обменных процессов, снижается эффективность переваривания и всасывания питательных веществ, становится сложнее воздействовать на организм лекарственными препаратами, т. к. они усваиваются недостаточно и вызывают большее количество побочных эффектов. Дополнительное поступление большого количества ферментов в организм позволит компенсировать их недостаток и все обусловленные этим последствия.

Таким образом, достаточное количество ферментов в организме является необходимым условием его здорового состояния. Многие заболевания вызываются недостаточной выработкой ферментов, что нарушает баланс обмена веществ в организме. Если обеспечить в дополнение к природной выработке ферментов их поступление извне, то это будет самым быстрым и лучшим способом лечения заболеваний.

Человеческий организм существует за счёт постоянного воздействия ферментов. Например, в процессе пищеварения с помощью ферментов (энзимов) происходят реакции разложения пищи на питательные вещества — белки, жиры, углеводы, витамины и микроэлементы; которые с их же помощью всасываются в кровь и разносятся ко всем органам. За счёт этого наши мышцы и кости, все органы и системы питаются, получают энергию и осуществляют функции, необходимые для поддержания организма в здоровом, активном состоянии.

Не только человеческий организм, но и всё живое, между небом и землёй, существует за счёт биохимических реакций, осуществляемых с помощью ферментов. Фермент является источником жизни и здоровья любого живого организма.

Роль ферментов в организме человека

Роль ферментов в поддержании жизнедеятельности организма удивительна по своей значимости.

Наличие ферментов и существование всего живого — неотделимые понятия. Если количество фермента недостаточно для поддержания жизни — это означает смерть. Появление зелёных листьев на деревьях весной, свет светлячка, любой акт жизнедеятельности человеческого тела (будь то приём пищи, прогулка по улице, пение, смех или плач) - все эти процессы обеспечиваются биохимическими реакциями и не возможны без обязательного участия ферментов.

С первого дня зачатия ребёнка ферменты начинают выполнять свою роль. Сперматозоид не сможет попасть в яйцеклетку, если ему не хватает особого фермента для растворения клеточной стенки яйцеклетки для осуществления процесса оплодотворения.

Вся потребляемая нами пища проходит сложный процесс расщепления на простые элементы в желудочно-кишечном тракте под воздействием пищеварительных ферментов. Только тогда эти питательные элементы могут попасть в кровь и разнестись ко всем органам и тканям. Попробуйте жевать кусочек хлеба в течение 2-3 минут, вы почувствуете, как он постепенно становится сладким — это потому, что под воздействием ферментов, содержащихся в слюне, крахмал расщепляется и высвобождается сладкая мальтоза.

При помощи ферментов в организме происходит не только процесс расщепления веществ, но и их синтез. Например, синтез аминокислот в молекулы белка — основного строительного материала для клеток мышц, волос и т. д., или превращение глюкозы в гликоген, который откладывается в печени и, в случае нехватки энергии, при помощи тех же ферментов, опять расщепляется на молекулы глюкозы, что обеспечивает в организме быстрый выброс энергии.

Процесс обновления кожи также происходит за счёт ферментов, участвующих в метаболических процессах. Если специфических для этого процесса ферментов достаточно, кожа будет нежной, блестящей и упругой. При дефиците фермента кожа становится сухой, шелушащейся, вялой.

В организме человека функционирует около 4000 различных видов ферментов. В нём происходят тысячи биохимических реакций, которые в комплексе могут быть сравнимы с большим химическим заводом. Но все эти химические реакции требуют ферментативного катализа, иначе они или не протекают или протекают очень медленно. Каждый фермент участвует в одной химической реакции. Некоторые из ферментов не могут быть синтезированы организмом. Если в организме не хватает каких-либо ферментов, то существует опасность развития заболевания или возникновения предболезненного состояния, которое рано или поздно проявится в болезни.

Поэтому, если вы хотите сохранить свою молодость, красоту и здоровье на долгие годы, необходимо обеспечивать содержание в организме достаточного количества ферментов. И если их уровень низкий, то основной источник их восполнения — ежедневный приём в виде биоактивных добавок.

Группы людей, особенно нуждающиеся в дополнительных источниках ферментов
Рассмотрим, какие группы людей особенно нуждаются в употреблении дополнительных ферментов.

    Те, кто хочет улучшить свою физическую форму, укрепить здоровье или восстановить его после болезни.

    Люди с ослабленным иммунитетом, часто подверженные инфекциям.

    Те, кто испытывает постоянную утомляемость, жалуется на отсутствие энергии, частую слабость.

    Преждевременно стареющие, немощные люди.

    Люди, страдающие хроническими заболеваниями.

    Онкобольные с различными типами рака, в до- и послеоперационный период.

    Люди, страдающие заболеваниями печени.

    Люди, предпочитающие мясную пищу.

    Люди, склонные к неврастении и другим нервно-психическим заболеваниям.

    Люди, страдающие половой дисфункцией.

    Женщины в дородовой и послеродовой период.

    Люди с нарушениями функций пищеварения.

    Вегетарианцы (пищевые добавки будут способствовать стабильности клетки).

    Люди с недостаточным телосложением, для улучшения физической формы (избыточный вес и ожирение, недостаточный вес).

    Люди с нарушениями и ограничениями в движении.

    Дети в период интенсивного роста (поскольку современные дети в большинстве своём почти не употребляют продукты, содержащие пищеварительные ферменты — липазу, амилазу и протеазу; и это является одной из главных причин детского ожирения, частых аллергий, запоров, повышенной утомляемости).

    Пожилые люди (с возрастом способность организма производить собственные ферменты уменьшается, снижается количество фермента, стимулирующего процесс «инвентаризации» в организме, именно поэтому потребление дополнительных ферментов является для них путём к долголетию).

    Пациенты с установленной ферментной дисфункцией (поскольку собственные ферментные запасы у них истощены, они особенно нуждаются в дополнительном приёме ферментов).

    Спортсмены особенно нуждаются в большом количестве дополнительных ферментов, поскольку из-за интенсивных физических нагрузок в их организме происходит ускоренный обмен веществ, а значит, и расход ферментных запасов также происходит усиленно (образно их можно сравнить со свечой, горящей с двух концов).

Пищеварительные ферменты – это вещества белковой природы, которые вырабатываются в желудочно-кишечном тракте. Они обеспечивают процесс переваривания пищи и стимулируют ее усвоение.

Основной функцией пищеварительных ферментов является разложение сложных веществ на более простые, которые легко усваиваются в кишечнике человека.

Действие белковых молекул направлено на следующие группы веществ:

  • белки и пептиды;
  • олиго- и полисахариды;
  • жиры, липиды;
  • нуклеотиды.

Виды ферментов

  1. Пепсин. Фермент представляет собой вещество, которое вырабатывается в желудке. Он воздействует на белковые молекулы в составе пищи, разлагая их на элементарные составляющие – аминокислоты.
  2. Трипсин и химотрипсин. Эти вещества входят в группу панкреатических ферментов, которые вырабатываются поджелудочной железой и доставляются в двенадцатиперстный кишечник. Здесь они также воздействуют на белковые молекулы.
  3. Амилаза. Фермент относится к веществам, разлагающим сахара (углеводы). Амилаза вырабатывается в ротовой полости и в тонком кишечнике. Она разлагает один из главных полисахаридов – крахмал. В результате получается небольшой углевод – мальтоза.
  4. Мальтаза. Фермент также воздействует на углеводы. Его специфическим субстратом является мальтоза. Она разлагается на 2 молекулы глюкозы, которые всасываются стенкой кишечника.
  5. Сахараза. Белок воздействует на другой распространенный дисахарид – сахарозу, которая содержится в любой высокоуглеводной пище. Углевод распадается на фруктозу и глюкозу, легко усваивающиеся организмом.
  6. Лактаза. Специфический фермент, который воздействует на углевод из молока – лактозу. При ее разложении получаются другие продукты – глюкоза и галактоза.
  7. Нуклеазы. Ферменты из данной группы воздействуют на нуклеиновые кислоты – ДНК и РНК, которые содержатся в пище. После их воздействия вещества распадаются на отдельные составляющие – нуклеотиды.
  8. Нуклеотидазы. Вторая группа ферментов, которая воздействует на нуклеиновые кислоты, называется нуклеотидазами. Они разлагают нуклеотиды с получением более мелких составляющих – нуклеозидов.
  9. Карбоксипептидаза. Фермент воздействует на небольшие белковые молекулы – пептиды. В результате такого процесса получаются отдельные аминокислоты.
  10. Липаза. Вещество разлагает жиры и липиды, поступающие в пищеварительную систему. При этом образуются их составные части – спирт, глицерин и жирные кислоты.

Недостаток пищеварительных ферментов

Недостаточная выработка пищеварительных ферментов – это серьезная проблема, которая требует врачебного вмешательства. При небольшом количестве эндогенных энзимов пища не сможет нормально перевариваться в кишечнике человека.

Если вещества не перевариваются, то они не могут всасываться в кишечнике. Пищеварительная система способна усвоить только небольшие фрагменты органических молекул. Большие компоненты, которые входят в состав еды, не смогут принести пользу человеку. Вследствие этого в организме может развиться недостаточность тех или иных веществ.

Нехватка углеводов или жиров приведет к тому, что организм лишится «топлива» для активной деятельности. Недостаточность белков лишает тело человека строительного материала, которым являются аминокислоты. Кроме того, нарушение пищеварения приводит к изменению характера кала, которое может неблагоприятно влиять на характер .

Причины

  • воспалительные процессы в кишечнике и желудке;
  • нарушения характера питания (переедание, недостаточная термическая обработка);
  • болезни обмена веществ;
  • панкреатит и другие болезни поджелудочной железы;
  • поражение печени и желчных путей;
  • врожденные патологии ферментной системы;
  • послеоперационные последствия (недостаточность энзимов из-за удаления части пищеварительной системы);
  • лекарственные воздействия на желудок и кишечник;
  • беременность;

Симптомы

Длительное сохранение недостаточности пищеварения сопровождается появлением общих симптомов, связанных с пониженным поступлением питательных веществ в организм. В данную группу входят следующие клинические проявления:

  • общая слабость;
  • снижение работоспособности;
  • головные боли;
  • нарушения сна;
  • повышенная раздражительность;
  • в тяжелых случаях – симптомы анемии из-за недостаточного усвоения железа.

Избыток пищеварительных ферментов

Избыток пищеварительных ферментов наиболее часто наблюдается при таком заболевании, как панкреатит. Состояние связано с гиперпродукцией этих веществ клетками поджелудочной железы и нарушением их выведения в кишечник. В связи с этим развивается активное воспаление в ткани органа, вызванное воздействием ферментов.

Признаками панкреатита могут быть:

  • сильные боли в области живота;
  • тошнота;
  • вздутие;
  • нарушение характера стула.

Часто развивается общее ухудшение состояния больного. Появляется общая слабость, раздражительность, снижается масса тела, нарушается нормальный сон.

Как выявить нарушения в синтезе пищеварительных ферментов?

Основные принципы терапии ферментных нарушений

Изменение выработки пищеварительных ферментов является поводом для обращения к врачу. После проведения комплексного обследования доктор определит причину возникновения нарушений и назначит соответствующее лечение. Самостоятельно бороться с патологией не рекомендуется.

Важным компонентом лечения является правильное питание. Больному назначается соответствующая диета, которая направлена на облегчение переваривания пищи. Необходимо избегать переедания, так как это провоцирует кишечные расстройства. Пациентам назначается лекарственная терапия, в том числе и заместительное лечение .

Конкретные средства и их дозировки подбираются врачом.

В клетке любого живого организма протекают миллионы химических реакций. Каждая из них имеет большое значение, поэтому важно поддерживать скорость биологических процессов на высоком уровне. Почти каждая реакция катализируется своим ферментом. Что такое ферменты? Какова их роль в клетке?

Ферменты. Определение

Термин "фермент" происходит от латинского fermentum - закваска. Также они могут называться энзимами от греческого en zyme - "в дрожжах".

Ферменты - биологически активные вещества, поэтому любая реакция, протекающая в клетке, не обходится без их участия. Эти вещества выполняют роль катализаторов. Соответственно, любой фермент обладает двумя основными свойствами:

1) Энзим ускоряет биохимическую реакцию, но при этом не расходуется.

2) Величина константы равновесия не меняется, а лишь ускоряется достижение этого значения.

Ферменты ускоряют биохимические реакции в тысячу, а в некоторых случаях в миллион раз. Это значит, что при отсутствии ферментативного аппарата все внутриклеточные процессы практически остановятся, а сама клетка погибнет. Поэтому роль ферментов как биологически активных веществ велика.

Разнообразие энзимов позволяет разносторонне регулировать метаболизм клетки. В любом каскаде реакций принимает участие множество ферментов различных классов. Биологические катализаторы обладают большой избирательностью благодаря определенной конформации молекулы. Т. к. энзимы в большинстве случаев имеют белковую природу, они находятся в третичной или четвертичной структуре. Объясняется это опять же специфичностью молекулы.

Функции энзимов в клетке

Главная задача фермента - ускорение соответствующей реакции. Любой каскад процессов, начиная с разложения пероксида водорода и заканчивая гликолизом, требует присутствия биологического катализатора.

Правильная работа ферментов достигается высокой специфичностью к определенному субстрату. Это значит, что катализатор может ускорять только определенную реакцию и никакую больше, даже очень похожую. По степени специфичности выделяют следующие группы энзимов:

1) Ферменты с абсолютной специфичностью, когда катализируется только одна-единственная реакция. Например, коллагеназа расщепляет коллаген, а мальтаза расщепляет мальтозу.

2) Ферменты с относительной специфичностью. Сюда входят такие вещества, которые могут катализировать определенный класс реакций, к примеру, гидролитическое расщепление.

Работа биокатализатора начинается с момента присоединения его активного центра к субстрату. При этом говорят о комплементарном взаимодействии наподобие замка и ключа. Здесь имеется в виду полное совпадение формы активного центра с субстратом, что дает возможность ускорять реакцию.

Следующий этап заключается в протекании самой реакции. Ее скорость возрастает благодаря действию ферментативного комплекса. В конечном итоге мы получаем энзим, который связан с продуктами реакции.

Заключительный этап - отсоединение продуктов реакции от фермента, после чего активный центр вновь становится свободным для очередной работы.

Схематично работу фермента на каждом этапе можно записать так:

1) S + E ——> SE

2) SE ——> SP

3) SP ——> S + P , где S - это субстрат, E - фермент, а P - продукт.

Классификация ферментов

В организме человека можно найти огромное количество ферментов. Все знания об их функциях и работе были систематизированы, и в итоге появилась единая классификация, благодаря которой можно легко определить, для чего предназначен тот или иной катализатор. Здесь представлены 6 основных классов энзимов, а также примеры некоторых подгрупп.

  1. Оксидоредуктазы.

Ферменты этого класса катализируют окислительно-восстановительные реакции. Всего выделяют 17 подгрупп. Оксидоредуктазы обычно имеют небелковую часть, представленную витамином или гемом.

Среди оксидоредуктаз часто встречаются следующие подгруппы:

а) Дегидрогеназы. Биохимия ферментов-дегидрогеназ заключается в отщеплении атомов водорода и переносе их на другой субстрат. Эта подгруппа чаще всего встречается в реакциях дыхания, фотосинтеза. В составе дегидрогеназ обязательно присутствует кофермент в виде НАД/НАДФ или флавопротеидов ФАД/ФМН. Нередко встречаются ионы металлов. Примерами могут служить такие энзимы, как цитохромредуктазы, пируватдегидрогеназа, изоцитратдегидрогеназа, а также многие ферменты печени (лактатдегидрогеназа, глутаматдегидрогеназа и т. д.).

б) Оксидазы. Ряд ферментов катализирует присоединение кислорода к водороду, в результате чего продуктами реакции могут быть вода или пероксид водорода (H 2 0, H 2 0 2). Примеры ферментов: цитохромоксидаза, тирозиназа.

в) Пероксидазы и каталазы - энзимы, катализирующие распад H 2 O 2 на кислород и воду.

г) Оксигеназы. Эти биокатализаторы ускоряют присоединение кислорода к субстрату. Дофамингидроксилаза - один из примеров таких энзимов.

2. Трансферазы.

Задача ферментов этой группы состоит в переносе радикалов от вещества-донора к веществу-реципиенту.

а) Метилтрансферазы. ДНК-метилтрансферазы - основные ферменты, контролирующие процесс репликации нуклеотидов играет большую роль в регуляции работы нуклеиновой кислоты.

б) Ацилтрансферазы. Энзимы этой подгруппы транспортируют ацильную группу с одной молекулы на другую. Примеры ацилтрансфераз: лецитинхолестеринацилтрансфераза (переносит функциональную группу с жирной кислоты на холестерин), лизофосфатидилхолинацилтрансфераза (ацильная группа переносится на лизофосфатидилхолин).

в) Аминотрансферазы - ферменты, которые участвуют в превращении аминокислот. Примеры ферментов: аланинаминотрансфераза, которая катализирует синтез аланина из пирувата и глутамата путем переноса аминогруппы.

г) Фосфотрансферазы. Ферменты этой подгруппы катализируют присоединение фосфатной группы. Другое название фосфотрансфераз, киназы, встречается намного чаще. Примерами могут служить такие энзимы, как гексокиназы и аспартаткиназы, которые присоединяют фосфорные остатки к гексозам (чаще всего к глюкозе) и к аспарагиновой кислоте соответственно.

3. Гидролазы - класс энзимов, которые катализируют расщепление связей в молекуле с последующим присоединением воды. Вещества, которые относятся к этой группе, - основные ферменты пищеварения.

а) Эстеразы - разрывают эфирные связи. Пример - липазы, которые расщепляют жиры.

б) Гликозидазы. Биохимия ферментов этого ряда заключается в разрушении гликозидных связей полимеров (полисахаридов и олигосахаридов). Примеры: амилаза, сахараза, мальтаза.

в) Пептидазы - энзимы, катализирующие разрушение белков до аминокислот. К пептидазам относятся такие ферменты, как пепсины, трипсин, химотрипсин, карбоиксипептидаза.

г) Амидазы - расщепляют амидные связи. Примеры: аргиназа, уреаза, глутаминаза и т. д. Многие ферменты-амидазы встречаются в

4. Лиазы - ферменты, по функции схожие с гидролазами, однако при расщеплении связей в молекулах не затрачивается вода. Энзимы этого класса всегда имеют в составе небелковую часть, например, в виде витаминов В1 или В6.

а) Декарбоксилазы. Эти ферменты действуют на С-С связь. Примерами могут служить глутаматдекарбоксилаза или пируватдекарбоксилаза.

б) Гидратазы и дегидратазы - ферменты, которые катализируют реакцию расщепления связей С-О.

в) Амидин-лиазы - разрушают С-N связи. Пример: аргининсукцинатлиаза.

г) Р-О лиазы. Такие ферменты, как правило, отщепляют фосфатную группу от вещества-субстрата. Пример: аденилатциклаза.

Биохимия ферментов основана на их строении

Способности каждого энзима определяются индивидуальным, только ему свойственным строением. Любой фермент - это, прежде всего, белок, и его структура и степень сворачивания играют решающую роль в определении его функции.

Для каждого биокатализатора характерно наличие активного центра, который, в свою очередь, делится на несколько самостоятельных функциональных областей:

1) Каталитический центр - это специальная область белка, по которой происходит присоединение фермента к субстрату. В зависимости от конформации белковой молекулы каталитический центр может принимать разнообразную форму, которая должна соответствовать субстрату так же, как замок ключу. Такая сложная структура объясняет то, что находится в третичном или четвертичном состоянии.

2) Адсорбционный центр - выполняет роль «держателя». Здесь в первую очередь происходит связь между молекулой фермента и молекулой-субстратом. Однако связи, которые образует адсорбционный центр, очень слабые, а значит, каталитическая реакция на этом этапе обратима.

3) Аллостерические центры могут располагаться как в активном центре, так и по всей поверхности фермента в целом. Их функция - регулирование работы энзима. Регулирование происходит с помощью молекул-ингибиторов и молекул-активаторов.

Активаторные белки, связываясь с молекулой фермента, ускоряют его работу. Ингибиторы же, напротив, затормаживают каталитическую активность, причем это может происходить двумя способами: либо молекула связывается с аллостерическим центром в области активного центра фермента (конкурентное ингибирование), либо она присоединяется к другой области белка (неконкурентное ингибирование). считается более действенным. Ведь при этом закрывается место для связывания субстрата с ферментом, причем этот процесс возможен только в случае практически полного совпадения формы молекулы ингибитора и активного центра.

Энзим зачастую состоит не только из аминокислот, но и из других органических и неорганических веществ. Соответственно, выделяют апофермент - белковую часть, кофермент - органическую часть, и кофактор - неорганическую часть. Кофермент может быть представлен улгеводами, жирами, нуклеиновыми кислотами, витаминами. В свою очередь, кофактор - это чаще всего вспомогательные ионы металлов. Активность ферментов определяется его строением: дополнительные вещества, входящие в состав, меняют каталитические свойства. Разнообразные виды ферментов - это результат комбинирования всех перечисленных факторов образования комплекса.

Регуляция работы ферментов

Энзимы как биологически активные вещества не всегда необходимы организму. Биохимия ферментов такова, что они могут в случае чрезмерного катализа навредить живой клетке. Для предотвращения пагубного влияния энзимов на организм необходимо каким-то образом регулировать их работу.

Т. к. ферменты имеют белковую природу, они легко разрушаются при высоких температурах. Процесс денатурации обратим, однако он может существенно повлиять на работу веществ.

pH также играет большую роль в регуляции. Наибольшая активность ферментов, как правило, наблюдается при нейтральных значениях pH (7,0-7,2). Также есть энзимы, которые работают только в кислой среде или только в щелочной. Так, в клеточных лизосомах поддерживается низкий pH, при котором активность гидролитических ферментов максимальна. В случае их случайного попадания в цитоплазму, где среда уже ближе к нейтральной, их активность снизится. Такая защита от «самопоедания» основана на особенностях работы гидролаз.

Стоит упомянуть о значении кофермента и кофактора в составе ферментов. Наличие витаминов или ионов металла существенно влияет на функционирование некоторых специфических энзимов.

Номенклатура ферментов

Все ферменты организма принято называть в зависимости от их принадлежности к какому-либо из классов, а также по субстрату, с которым они вступают в реакцию. Иногда по используют в названии не один, а два субстрата.

Примеры названия некоторых энзимов:

  1. Ферменты печени: лактат-дегидроген-аза, глутамат-дегидроген-аза.
  2. Полное систематическое название фермента: лактат-НАД+-оксидоредукт-аза.

Сохранились и тривиальные названия, которые не придерживаются правил номенклатуры. Примерами являются пищеварительные ферменты: трипсин, химотрипсин, пепсин.

Процесс синтеза ферментов

Функции ферментов определяются еще на генетическом уровне. Т. к. молекула по большому счету - белок, то и ее синтез в точности повторяет процессы транскрипции и трансляции.

Синтез ферментов происходит по следующей схеме. Вначале с ДНК считывается информация о нужном энзиме, в результате чего образуется мРНК. Матричная РНК кодирует все аминокислоты, которые входят в состав энзима. Регуляция ферментов может происходить и на уровне ДНК: если продукта катализируемой реакции достаточно, транскрипция гена прекращается и наоборот, если возникла потребность в продукте, активизируется процесс транскрипции.

После того как мРНК вышла в цитоплазму клетки, начинается следующий этап - трансляция. На рибосомах эндоплазматической сети синтезируется первичная цепочка, состоящая из аминокислот, соединенных пептидными связями. Однако молекула белка в первичной структуре еще не может выполнять свои ферментативные функции.

Активность ферментов зависит от структуры белка. На той же ЭПС происходит скручивание протеина, в результате чего образуются сначала вторичная, а потом третичная структуры. Синтез некоторых ферментов останавливается уже на этом этапе, однако для активизации каталитической активности зачастую необходимо присоединение кофермента и кофактора.

В определенных областях эндоплазматической сети происходит присоединение органических составляющих энзима: моносахаридов, нуклеиновых кислот, жиров, витаминов. Некоторые ферменты не могут работать без наличия кофермента.

Кофактор играет решающую роль в образовании Некоторые функции ферментов доступны только при достижении белком доменной организации. Поэтому для них очень важно наличие четвертичной структуры, в которой соединяющим звеном между несколькими глобулами белка является ион металла.

Множественные формы ферментов

Встречаются ситуации, когда необходимо наличие нескольких энзимов, катализирующих одну и ту же реакцию, но отличающихся друг от друга по каким-либо параметрам. Например, фермент может работать при 20 градусах, однако при 0 градусов он уже не сможет выполнять свои функции. Что делать в подобной ситуации живому организму при низких температурах среды?

Эта проблема легко решается наличием сразу нескольких ферментов, катализирующих одну и ту же реакцию, но работающих в разных условиях. Существуют два типа множественных форм энзимов:

  1. Изоферменты. Такие белки кодируются разными генами, состоят из разных аминокислот, однако катализируют одну и ту же реакцию.
  2. Истинные множественные формы. Эти белки транскрибируются с одного и того же гена, однако на рибосомах происходит модификация пептидов. На выходе получают несколько форм одного и того же фермента.

В результате первый тип множественных форм сформирован на генетическом уровне, когда второй - на посттрансляционном.

Значение ферментов

В медицине сводится к выпуску новых лекарственных средств, в составе которых вещества уже находятся в нужных количествах. Ученые еще не нашли способ стимулирования синтеза недостающих энзимов в организме, однако сегодня широко распространены препараты, которые могут на время восполнить их недостаток.

Различные ферменты в клетке катализируют большое количество реакций, связанных с поддержанием жизнедеятельности. Одними из таких энизмов являются представители группы нуклеаз: эндонуклеазы и экзонуклеазы. Их работа заключается в поддержании постоянного уровня нуклеиновых кислот в клетке, удалении поврежденных ДНК и РНК.

Не стоит забывать о таком явлении, как свертывание крови. Являясь эффективной мерой защиты, данный процесс находится под контролем ряда ферментов. Главным из них является тромбин, который переводит неактивный белок фибриноген в активный фибрин. Его нити создают своеобразную сеть, которая закупоривает место повреждения сосуда, тем самым препятствуя излишней кровопотере.

Ферменты используются в виноделии, пивоварении, получении многих кисломолочных продуктов. Для получения спирта из глюкозы могут использоваться дрожжи, однако для удачного протекания этого процесса достаточно и экстракта из них.

Интересные факты, о которых вы не знали

Все ферменты организма имеют огромную массу - от 5000 до 1000000 Да. Это связано с наличием белка в составе молекулы. Для сравнения: молекулярная масса глюкозы - 180 Да, а углекислого газа - всего 44 Да.

На сегодняшний день открыто более чем 2000 ферментов, которые были обнаружены в клетках различных организмов. Однако большинство из этих веществ до конца еще не изучено.

Активность ферментов используется для получения эффективных стиральных порошков. Здесь энзимы выполняют ту же роль, что и в организме: они разрушают органические вещества, и это свойство помогает в борьбе с пятнами. Рекомендуется использовать подобный стиральный порошок при температуре не выше 50 градусов, иначе может пойти процесс денатурации.

По статистике, 20% людей по всему миру страдает от недостатка какого-либо из ферментов.

О свойствах энзимов знали очень давно, однако только в 1897 году люди поняли, что для сбраживания сахара в спирт можно использовать не сами дрожжи, а экстракт из их клеток.